人工智能产品经理读书笔记5

#机器学习

##概念
PM应该掌握的内容:
(a)机器学习流程;
(b)ML可以解决的问题分类;
(c)算法基本原理;
(d)工程实践中算法、数据和计算资源之间的依赖关系;
image.png

###1. ML与几种常见概念的关系

四个名词的关系
不同学习方法的逻辑处理流程

###2. ML本质
人类信息和机器学习逻辑处理流程对比
机器和人的不同认知过程

##机器学习流程拆解
(1) 原始数据采集–>(2)数据预处理–>(3) 模型训练–>(4)模型评估–>(5)调参–>(6)推断

机器学习处理过程流程图
数据挖掘中的预处理方法:数据清洗、数据集成、数据转换、数据削减、数据离散化等;
深度学习中的预处理方法:归一化、数据白白化等;

##AI PM必备算法常识

###1. 算法分类
方式1:模型训练方式
监督学习、无监督学习、半监督信息、强化学习;
方式2:任务分类
二分类、多分类、回归、聚类、异常检测;

###2. 算法适用场景
需要分析的因素:
(1)数据量的大小、数据质量和数据本身的特性。
(2)机器学习要解决的具体业务场景中问题本质是什么?
(3)可以接受的计算时间是什么?
(4)算法精度要求有多高?
根据算法的擅长点选取不同的算法!

##ML的常见开发平台
常见的机器学习开发平台汇总

-------------本文结束感谢您的阅读-------------

本文标题:人工智能产品经理读书笔记5

文章作者:女王的专属领地

发布时间:2017年10月07日 - 16:10

最后更新:2018年07月20日 - 11:07

原始链接:http://queenjuliazxx.github.io/2017/10/07/人工智能产品经理读书笔记5/

许可协议: 本博客采用CC BY-NC-ND 许可协议 转载请保留原文链接及作者。

朱晓霞 wechat
欢迎大家关注我的微信公众号,订阅我的博客!
坚持原创技术分享,您的支持将鼓励我继续创作!